Q-slope analysis of global data
and new techniques for Q-slope
studies
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A well defined problem? High beta

* We define three different problems based on slope trends.
Is this the correct approach?

e Global or localized effect? Magnetic field effect? Electric?

* Some test (Ciovati-Jlab, Eremeev-Cornell) show peak
magnetic fields responsible for HFQS, what about Medium

Field Q-slope?
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A well defined problem? High beta

Analysis of correlation
between the slope in the
medium and high field
regions performed on the
BCP not baked cavity —
Cornell data (G. Eremeey,
PhD thesis) —
homogeneity of MFQS is
concluded

*Spread in individual
dT(H) curves observed in
Fermilab EP baked cavity
in the medium field
region — spatial non-
homogeneity is
observed, especially in
the high electric field
region

*Need for more
thermometry/cutout
studies

*At TRIUMF with muSR
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Q-slope in the low beta world

*Do definitions of high beta/low beta Q-slope coincide?
*What is Q-slope at low, medium and high field regimes in low beta cavities?
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Q-slope analysis: approaches

* Model surface resistance and use the model
to find fitting values for different parameters:
better a posteriori (based on experimental
evidence)

* Fit and look for trends in: temperature,
treatments, frequency: it might allow to find
correlation and draw conclusions



Trend analysis

LF-MF-HFQS, peak magnetic field range <20mT,
20-60mT, above 60mT

Low beta cavities analyzed include ~50 cavities:
QWR TRIUMF ISAC2 phase 1 (106 MHz) and
2(141MHz), SPIRAL2(88MHz), MSU(80.5MHz),
SPOKE ANL(345MHz), LANL(350MHz), ORSAY
(352MHz)

High RRR, 2-3mm walls, standard treatments
include BCP (80-200microns), HPR, EP for ANL

MFQS: Quadratic and linear fit:
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On G/Rs

I f L u H*dv

Definition of quality factor: @, = P filu;e(H)szS
diss 27 s

surf ace

But magnetic field is NOT constant over cavity surface and IF
AND ONLY IF Rs(H) = const it can be simplified to

W f% u H*dv

_ volume —
o R(H) [L1H%ds R,

surf ace

If the goal is giving a rough estimate of the avg surface resistance
then OK

But if we try to understand the field dependence of Rs, it’s
meaningless to first assume Rs does not depend on H and then
look for the (strong) H dependence.
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Case study: low beta quarter wave
38 MHz

Incorrect procedure Correct procedure

m  Experimental data
Fit by G/Rs with Rs = Rs(H)
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6X108- . . 6 108_
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Ratio of the correct gamma to the “G/Rs” gamma for this geometry: 1.76



G/Rs summary

 Comparison within one fixed geometry between
different treatments — qualitative trend — G/Rs
values can be used

* Across different geometries — G/Rs is incorrect,
only numerical surface integration should be used
to extract Gammas and other Rs parameters

* Correction factors (GammaReal/GammaG_Rs)
— Low beta quarter wave — 1.76
— High beta elliptical = 1.27



Low field Q-slope

Low field Q-increase is never observed in low
beta cavities

Steeper (than mf) slope below 20-30 mT

e Effect more pronounced after baking
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Medium field Q-slope
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gamma

Correlation with residual resistance?
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2K vs 4.2K

18
16 -
14 -

H1S2-15
12 - Ss2-15*
10 - W Sp-pr*
8 W SP-Pr¥2K
6 B MSU-1
4 B MSU-1-2K
2 I I B | ANL2K
0 B L ANL4K
¥ ANLspokel.9
\‘v \c, c, Qg‘* @‘" c}y""\L \,@\r’& \y@’b‘ Qa@\’ lANLsEoke4 2K
CEINER Rlinear @ Rlinear @ 2K
4.2K 4.2K
ISAC2-cav15 11.033 1.96e-7 1.34e-7
Spiral- 9.36 8.91 0 0
Praxaede
MSU-1 15.94 3.99 0 0
LANL-SS 10.66 3.92 0 0

ANL-TS 8.23 1.42 0 0



120C bake effect on MFQS

* 120C bake always 1-E+157’7;372%fﬁ—:“4:“ = fﬁ!@
improves LEF10 TR pE
significantly MFQS in  1.e+09 a5 it
SPIRAL cavities 1 E+08

* Preliminary results 1.E4+07
of studies at TRIUMF 0 1 2 3 4 Sgacc(Mv/m) 9 10 11
(D.Longuevergne,

B.Laxdal,

V. Zvyaglntsev on

also improvement of before | after | before
MFQS with 120C SPIRAL  28.8 9.36
bake ISAC2  6.69 20.7 6.31e-7 4.17e-7



BCP vs EP

Lower MFQS with EP Qo vs Ea
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Hydrogen role on low beta MFQS

Test at TRIUMF, look for correlation slope-hydrogen

Several QW cavities tested after fast cooldown and after 1-2 hr
at 100K (V.Zvyagintsev)

Trend in slope-additional resistance from Q-disease test

Also, the lowest gamma value (gamma~2)among analyzed low
beta resonators (2K) is the degassed ANL 0.63 triple spoke

However ANL TS 4.2K slope (gamma ~10) did not change
significantly with degassing
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Comparisons MFQS low-high beta: 2K, 4.2K

TESLA 9-cell 1.3 GHz cavities at 2 K
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* From this analysis 2K H e T =
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HF onset and slope — frequency dependence
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Cutout studies at TRIUMF: muSR

Electronic clock

X

Muon

A
1
1
detector :

Positron
detector

Positron
detector

"Themes" in ySR

Muonium as light Hydrogen The Muon as a Probe

(Mu = p'e) (H=p"e)
® Probing Magnetism: unequalled sensitivity

° : .
LRSI G L 7 - Local fields: electronic structure; ordering

ge==liuicitisolls - Dynamics: electronic, nuclear spins

- Best test of reaction rate theories.
- Study "unobservable’ H atom rxns. ® Probing Superconductivity: (esp. HT.SC)
- Di dical ies.
Discover new radical species - Coexistence of SC & Magnetism
- Magnetic Penetration Depth A

- Coherence Length ¢

® Mu vs. H in Semiconductors:
- Until recently, ;* SR — only data on

metastable H states in semiconductors!

® Quantum Diffusion: u* in metals (compare H'); Mu in nonmetals (compare H).



Magnetic field distribution of a vortex lattice
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RF losses due to fluxoids: of interest for
MF and HFQS

. Two mechanisms for fluxoids
in Nb:
1.  Trapped flux ’ ,/'"
2.  Penetration at sites with ® 4
lower Hp (<Hc1) L ¢
“ v,
. Two mechanisms of e v No
dissipation: ; . o
1. Stationary normal region . ,:‘ o
2. Oscillating fluxoid - SO
*  Pinned _‘,'.'/.
. Depinned Te
FIG. 17. Vortices (shown as dashed lines) trapped near the sur

face by pinmng centers (black dols).



Hypothesis to test: HFQS

1611 -

e Steep losses above e
80-100mT due to early Y
flux penetration Lo :

* |s the surface entering
an intermediate mixed
state?

e Correlate ‘hot spots’ A i | i
cutout from cavities
with areas of higher
density of ‘islands’ in
the mixed state




Samples to be used
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Description of the first experiment

Look for intermediate mixed state in hot spots cutout
samples (~ cm? size, 3mm thick, interested only in RF side)

Need for a local probe: muSR
LAMPF spectrometer
Field range 0-150 mT, Temperature range 1K-4.2K

5 samples:
— Pristine Nb —from vendor

— Hot/cold spot cutout from large grain cavity (before and after
bake) — provided by Alexander Romanenko, Hasan Padamsee
(Cornell)

Beamtime approved: ~1 day per sample = 12 shifts,
starting Oct 27th



Hypothesis to test: MFQS

AZ.A

-ield dependence of i
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Field dependent losses i
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where dissipation occurs IE
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week ending
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PRL 95, 197001 (2005)

Field Dependence of the Vortex Core Size in a Multiband Superconductor

E D. Callaghan,’ M. Laulajainen,’ C.V. Kaiser,' and J. E. Sonier'~

'Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 156, Canada
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“Effective” Magnetic Penetration
Depth: Magnetic Field Dependence

2000 - .
* V,;Si fully gapped

 LUNi,B,C anisotropic gap
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Pure Vanadium (marginal type-II)

Real Amplitude (a.u.)
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Description of the second experiment

Determine the field dependence of the effective
penetration depth (and vortex core size) in the
vortex and intermediate mixed states. Will do this
at several temperatures to investigate the
possibility of two SC gaps.

Take advantage of muSR unique software for
measurements of the vortex lattice in a marginal

type-li
TF-muSR, dilution refrigerator
Pristine single crystal sample

Beamtime approved: 12 shifts



Conclusions

 HFQS:
— well defined problem
— one physical underlying mechanism
— unsolved

— muSR experiment at TRIUMF to confirm or rule out role of early flux
penetration

* MEFQS:
— several contributors, both local and global
— To be found in both microscopic and macroscopic parameters

— Hydrogen plays a role at low beta, need for more degassing studies
(planned at TRIUMF)

— Need for diagnostic tools like thermometry and more cutout studies
— some planned at TRIUMF again with muSR



